
MDQ in SWAMID
Since 2016 s has been signed with a key in a . This has been fine since we previously only were creating a SWAMID metadata HSM handful of metadata

 (of different sizes). The problem with the aggregated feeds is that it takes time and memory(!) to load an in SWAMID's case 80 MB aggregation files XML
file in to the Identity Providers and Service Providers. Had a conversation recently with a new SP in our . They guessed that crashed on federation shibd
start since it appeared to just hang - .told them to take a deep breath and relax

One solution for this memory and size problem isto start using the instead of big aggregated files. By using the MDQ protocol the SPs and MDQ Protocol
IdPs don't need to load the whole federation. Instead they loads requested entities on the fly. So if both an IdP and an SP uses MDQ the SP will first fetch
the IdPs metadata from the MDQ server and then redirect for login. The IdP will then fetch the SPs metadata from the MDQ server, prompt for
authentication and then redirect the user back to the SP. Pretty easy flow but it requires the MDQ server to be fast and always available!

Our software of choice, , can act as a MDQ server and serve signed metadata files on request. But connecting to the HSM makes the signing pyFF pyFF
too slow and would in a case of many requests in a short time create a heavy load on our HSM servers, which we would like to avoid. can be run in pyFF
batch mode which will sign all entities and output them to disk (e.g for mirroring) but that would still require us to sign around 9500 entities each run which
once again would put our HSMs at risk. Another factor why we chose the design we ended up with is that we would like to protect the machines (signers)
connected to the HSM from the internet.

So what we came up with is tools and wrappers around which fetches SWAMIDs and metadata (a total of around 9500 entities), splits pyFF eduGAINs
them up in parts, and signs all entities over the current day. That's around 400 per hour and we run it 4 times an hour via . This creates a reasonable cron
load on the HSMs. We prioritises new, updated or removed entities which are usably published 15 minutes after we detect a change. The tooling is based
on a script we call which have som pre and post scripts written in . python mdqp sh
The basic flow looks like:

Metadata is fetched from (a signed commit is verified) and eduGAINgit
pyFF reloads the metadata
The given amount of entities (new, updated or removed prioritised) are fetched from via pyFF mdqp
Our aggregated feeds are fetched from pyFF
All signed entities and files are ed to the publishers (web servers)rsync

There are two ways of getting an entity through the MDQ protocol:

Getting them by entitiyId, e.g /entities/https://connect.eduid.se/sunet
Getting them by the of the entityid, e.g sha1sum entities/{sha1}47918903a357c193bcd985a23c5958a8a43278c0

Both methods should be which makes things complicated. "Regular" webservers (e.g or) decodes an incoming encoded url url encoded apache2 nginx
string before processing the request which would make it impossible for us to store the first alternative on disk (contains slashes). We also would like to
support both alternative with the same file on disk so for that purpose we ended up in which will writing ourself a very small and simple web server golang
serve our very niche set of requirements.

The web servers themselves are by a geo distributed cluster of to even out the load and terminating .protected HAProxy TLS

https://www.sunet.se/services/identifiering/swamid
https://en.wikipedia.org/wiki/SAML_metadata
https://en.wikipedia.org/wiki/Hardware_security_module
https://mds.swamid.se/md/
https://mds.swamid.se/md/
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Trust_federation
https://xkcd.com/303/
https://datatracker.ietf.org/doc/draft-young-md-query/
https://pyff.io/
https://edugain.org/
https://en.wikipedia.org/wiki/Cron
https://github.com/SUNET/mdqp/tree/main
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Rsync
https://mds.swamid.se/entities/https://connect.eduid.se/sunet
https://en.wikipedia.org/wiki/Sha1sum
https://mds.swamid.se/entities/%7Bsha1%7D47918903a357c193bcd985a23c5958a8a43278c0
https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Nginx
https://github.com/SUNET/docker-swamid-mdq-publisher/tree/main
https://en.wikipedia.org/wiki/Go_(programming_language
https://en.wikipedia.org/wiki/HAProxy
https://en.wikipedia.org/wiki/Transport_Layer_Security

Happy MDQing.

See for more information about getting started with MDQ in SWAMID. our wiki

--
jocar

SWAMID Operations

https://wiki.sunet.se/display/SWAMID/SAML+Metadata+and+Trust

	MDQ in SWAMID

